Multi-project discount rates for energy technology policies: A formal example on Combined Heat and Power 




Abstract
This paper introduces multi-project discount rates with a view to include multiple project performances in energy technology policies. The case of Combined Heat and Power (CHP) is presented to formally demonstrate that multi-project weights could be applied when setting discount rates for energy policies. It is concluded that while uncertainty around the performance of both CHP and other energy technologies might affect measurements of risk and estimated available budget for future re-investment, it is possible to determine multi-project weighted discount rates by following a reversed intertemporal approach of applied general equilibrium.
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1. Introduction

In energy policies where a multitude of technologies need to be assessed at the same time, changes in market risks and Government available budget are likely to affect the assessment of benefits and costs (Torriti, 2010). Standard practice on discount rate setting fails to capture the fact that public projects and policies do not exist in isolation (Lind, 1995; Awerbuch, 2006). Discount rates could capture multiple-project factors in terms of market risks and variations to the availability of budget for one or more energy technologies. Risk modelling could not possibly work on long-term policies or projects, where non-market uncertainties are too significant to be modeled (Dasgupta, 2008; McKibbin and Wilcoxen, 2009). Moreover, corrections to discount rates cannot be applied to long-term policies or projects as they would favour one generation over others (Viscusi, 1997). 

This paper argues that multi-project weighted discount rates could be applied to those policies and projects concerned with future available budget to be re-invested in the project within the time frame of 20 to 30 years. This is the case of policy scenarios for energy technologies, which are characterized by interrelated investment choices, depending on their technical and economic performance (Strachan and Kannan, 2008). The theoretical demonstration on multi-project weighted discount rates is carried out on an example of energy technology, Combined Heat and Power (CHP) by modelling the evolution throughout time of the estimated value of future available budget to be re-invested in CHP and risks associated with the market benefits of CHP, which is typically expressed in terms of market value of outstanding projects. The case of CHP is of interest because investments in this technology are seen both in conjunction with and as an alternative to renewable sources of energy and nuclear (Vasebi et al, 2007). 

After this introduction, the paper introduces the analytical framework for multi-project discounting (Section 1). It analyses the case of CHP (Section 2) and then discusses it (Section 3). It draws observations about cost-benefit analysis with multi-project weighted discount rates (Section 4) and concludes about the potential and limits of this research (Section 5).


2. Multi-project weighted discount rates
The present value of the future costs and benefits at the time t of a project or policy is typically estimated at the time T as

ET(Qt – Ct) =   	                    (1)

Where represents the discount rate,  the future costs and  the future benefits at the time t. Conveniently, discount rates are normally pre-set depending on deterministic values such as inflation rates (King and Rabelo, 1990). Discount rates can be estimated according to a distinction between non-weighted discount rates, which are typical of most policy appraisal problems taken individually, and discount rates which vary depending on the available budget for re-investment in the project and the performance of both the project they are accounted for and a portfolio of a related portfolio of projects which need to be assessed in multiple periods. The distinction does not imply that ‘risk-carrying’ discount rates include a premium for risk as in a private opportunity cost of capital (Gollier, 2002). Rather, the following equation defines the equilibrium at time t-1 as derived from applied general equilibrium models (Dierker, 1972; Cornet, 1988; Dixon, 1990). 

E(it) = DAt  [ E(Pt)- DAt] δi,                                                                                                                (2)

where DAt are the standard discount rates for the period from t-1 to t; E(it) is the estimated discount rate associated with projects i from t-1 to t; E(Pt) is the estimated discount rate for the entire portfolio of P projects; and hats denote random variables. 
The multi-project weight is defined as

δi =.

The portfolio of P projects invested at t-1 includes the entire available budget by Government at t-1, with each component of budget weighted by the ratio of the total estimated value of funded projects to the risk represented by the total market value of outstanding projects.

Eq. (2) states that in general equilibrium, the estimated discount rate on any available budget available for re-investment or portfolio of projects is the standard discount rate plus or minus the weight factor which is proportional to the weight of the funded projects. The analysis, however, applies directly to the concept that no project or policy is risk-free (Arrow, 1974; Dasgupta et al, 1972). Compared with applied general equilibrium models, DAt in (2) is replaced by the estimated discount rate on portfolio of projects whose net benefits are uncorrelated with the net benefits on P.

Eq. (2) is not a fitting representation of the process of assessment of net value of a project for a Government seeking to measure the impacts of different policies at time t-1. To focus more explicitly on net value of the project at time t-1, eq. (2) can be restated as

Wi, t-1 = ,                                           (3)

where   is the market value of the projects invested at t-1 and , is the value at t of outstanding projects invested at t-1.

Because of the additive property of means and covariances of sums of random variables, i in eq. (2) refers to a portfolio of projects. In other words, eq. (2) is the net value of the project equation for Government and for individual projects. In any of these cases, Wi, t-1 represents the market value at t-1, whereas Ŵit, is the market value of a project at t associated with holding i from t-1.

Eq. (2) provides a direct way to examine the effects of a Government’s project investment decisions on the net value of the project at t-1. If it is rational for Governments to make investment decisions according to a net value of the project criterion, then DAt and γt are market-based parameters which should be given for any individual project.  Accounting i, t-1 as benefits of Government projects i at t-1 and Ŵit, as the combined benefits at t of the budget available for Government re-investment in project i outstanding from t-1, the Government’s investment decisions in individual projects imply values for cov(Ŵit, ŴPt) and E(Ŵit), which -combined with DAt and γt - determine i, t-1.

Eq. (2) also discloses how the Government’s choice of combining E(i, t) and cov(Ŵit, ŴPt) produces the value of δi, which is the measure of the multi-project correlation in terms of risk and the Government’s available budget. Combining E(Ŵit) = i,t-1 [1+E(Ŵit)] with (2), leads to

  = ] = .


The term in the estimated discount rate in eq. (2) is the multi-project weight δi. Differences in the values of the multi-project weight δi are the source of differences in the values of E(). This is to reflect the fact that different project decisions on e.g. different energy technologies are associated with different risk perception levels in different countries. The ratio of covariance to estimated value cov()/E() is the source of differences in the values of E() for different Governments. Hence δi is directly related to cov()/E(). 

In order to assess admissible sources of uncertainty in multi-project market benefit assessment problems, it is convenient to define 

νt =  =  and cov (, Pt)/E( = cov                (4)

which allows to re-define the net value of the project equation (2) as follows:

                                                                                                                 (5)

The estimated discount rates E(it) are determined by cov (, Pt), which, from eq. (4), is the covariance of the net value of the project of a Government’s projects at t, per unit of the estimated market benefits, with the benefit/cost ratio on the project portfolio P. Hence, this covariance is the determinant of the multi-project weight δi in eq. (2). Accordingly, eq. (5) means that in an applied general equilibrium model, the net value of a Government project at t-1 could be described as the net value of the project of those who benefit from the project or policy at t discounted back to t-1 at a discount rate with multi-project weight whose value is cov (, Pt).


3. The case of Combined Heat and Power
Eqs. (2), (3) and (4) describe equilibrium at any time t-1. However, they do not disclose some significant aspects of the process of assessing costs, benefits and risks for multiple projects. For instance, eq. (4) defines the incidence of the budget of Government at t-1 in terms of estimated benefits for one period and the contribution of the budget of Government to the risk of net value one period hence. Yet, when assessing benefits in a cost-benefit analysis (CBA) in a multi-project context, where several investment decisions have to be taken in co-ordination (Dasgupta, 1982), the future value of market benefits Ŵit are also to be taken into account. There are interesting considerations concerning the source of the uncertainty in Ŵit, which are neglected if  is stated as in (4).

The most significant characteristics of multi-project CBA can be examined with a case from the energy sector. Energy policies require a portfolio approach, taking into account different projects at the same time. Consider a Government which has to make a decision about investments in different energy technology projects. One of the technologies, namely CHP, will be associated with net benefits  at time t and no budget available to reinvest at any other time. This could be explained by the fact that an incentive policy is adopted which foresees heavy upfront costs for combining new power plants with CHP. The level of investment in CHP will depend on estimated benefits of CHP as well as other technologies, e.g. renewable sources of energy and nuclear. It is assumed that the market benefits of a CHP project can be assessed as they are directly correlated to the techno-economic performance of CHP.

The aim here is to assess the net value of CHP technology at time 0, which in this case is just the net value of the project at time 0 of the probability distribution of net benefits to be obtained at t. The starting point is to assess the value of CHP technology at t-1, then at t-2, and so forth, as in Koopmans and Diamond (1964). In this example, the value of CHP at time t is determined by . The latter can be replaced with it in (5). Henceforth dropping i, which appeared on the technology-related variables, the value of the technology at t-1 will be

i, t-1 = .                                                                                                       

The value of the technology at t-2 now depends on where uncertainty is foreseen for the value of the technology at t-1. 

Any stochastic variation in DAt and νt, given (5) would affect the value of CHP at t-1, thus creating the type of relationship between net benefits at t-1 and the parameters of the portfolio of technologies set at t-1. One might be led to assume that any variation across technologies in the parameters is non stochastic. In principle it could be argued that the completely predictable variation in DAt and νt is less realistic than the assumption that the same parameters are constant across technologies. Those projects within the portfolio which have constant parameters in the benefit assessment equation (5) might apply deterministic approaches and constant discount rates. However, this step is not required by the model. Hence it is not possible to make further allegations on this point.


3.1 Assessing discount rates for CHP at time t 
From eq. (5) it can be noticed that any uncertainty at time t -2 about the value of CHP to be observed at t-1 is related to the uncertainty about the values of E(and cov() that will be assessed at t-1. 

If these are known in all earlier periods, then i, t-1, should be known for earlier periods. Assessing the benefits implies that

t-2 = ,                     Vo = .
   
As in eq. (4) and (5), the multi-projected weighted discount rate depends on the value of cov(Ŵt, Pt)/E(Ŵt), which in this example on CHP is cov()/E(.

If there is no uncertainty about cov() and E( the discount rates for periods prior to t are not subject to intertemporal assessment. A multi-project weighting of the discount rate is only relevant for the period t when the budget  will be spent.

The reason for this finding is associated with known values for cov() and E(. In other words, there is no uncertainty about , before t-1. How can  be made uncertain for periods before t – 1? It becomes necessary to bring in uncertainty about the evolution of assessments of cov() and E(, making sure that the types of uncertainty introduced are within the limits implied by the assumption that at any point in time the equilibrium is as in other applied general equilibrium models.


3.2 Assessing discount rates for CHP with uncertainty
After time t-1, the net benefits  taking place at the time t may be expressed as

 = Et-1()(l +t) = Et-1()+ Et-1()t                                                                                         (6)

with Et-1() as the estimated value of , dependent upon all information available at t-1, and t a random variable whose estimated value is 0. 

Supposing that at any time T-1 prior to t-1, t-1() is the estimated value of , to be assessed at T, t-1() is a random variable, whose value is

T() = ET-1()+ ET-1()T .                                                                                                             (7)

Estimated assessment values and future assessment values coincide. This implies that the estimated value of T conditional on all information available at T-1, is 0. While eq. (7) is a concise way to define the estimated value of , it is not its only definition. The role of

T =  -1                                                                                                                                                (8)

is set in terms of change in the estimated value of at T-1 and change of the estimated value of  from T-1 to T per unit of . 

When replacing (6) for (5), at time t-1 the value of CHP becomes

t-1 =   = ,                                                           (9)

with the weighted discount rate  determined by cov(Ŵt, Pt)/E(Ŵt). For the CHP example, Ŵt equals . Integrating (6) and (8), it results that cov(Ŵt, Pt)/Et-1(Ŵt) = cov()/Et-1(= .

Applying eqs. (4) and (5) implies that the value of CHP at t-2 depends on cov(Ŵt-1, P,t-1) and Et-2(Ŵt-1). Eq. (9) suggests that Ŵt-1 is a random variable at t-2 since E() and Et-1(could be random variables at t -2. As discussed earlier, however, if the equations can be sustained period by period, the uncertainty about the portfolio of technologies available at any time t-1 are independent of net benefits taking place at t-1. The estimated discount rate of the CHP technology, E(t), is part of the portfolio of technologies which Government faces at t-1. Looking at eq. (9) it can be noticed that any stochastic change between t-2 and t-1 is likely to affect the value of CHP at t-1. This means that some deterministic discount rate setting might take place between periods.

Since all uncertainty about Ŵt-1 at t-2 focuses on Et-1( in (9), the expressions for the parameters cov(Ŵt-1,  ) and Et-2(Ŵt-1 ), which are essential in order to assess the benefits of CHP technology at t -2, are simplified. Substituting (7) into (9)

Ŵt-1 = [Et-2() + Et-2()  t-1] ,                                                                                           (10)

with

Et-2(Ŵt-1 ) = Et-2()   

and 

cov(Ŵt-1,  ) = Et-2()  cov(t-1, )                                                                 (11)

Starting from the ratio of these two expressions, it results that

cov(Ŵt-1,  )/ Et-2(Ŵt-1) = cov(t-1, ).                                                                             (12)

From (8) it is known that


cov(t-1, ) = cov (t-1(), )/ Et-2().                                                                                                          (13)

The covariance of Ŵt-1  and  equals the covariance of t-1(), measured per unit of estimated value at t-2, with . This finding is derived by (10), which shows that Ŵt-1, i.e. the value of CHP technology at t-1, is perfectly correlated with t-1(), the assessment of the estimated value of the net benefits , as assessed at t-1.

Using (11) to (12), the market benefits equations (4) and (5) can be used to express the value of CHP technology at t-2 as

Wt-2 =  =  ,                                         (14)

where the multi-project weighted discount rate E() is determined by / From (12) and (13), E() is the same value as cov (t-1(), )/ Et-2(). Integrating with (11) Wt-2 = Et-2()   

Having reached a recursive argument, it can be supposed that at some time T the value of CHP can be defined as

WT = ET()                                                                                                (15)

The value of CHP at T is the estimated value at T of the net benefits taking place at time t, discounted at weighted discount rates for each of the periods between T and t. The random variable T is unknown at time T-1, since T() is not known. Furthermore, if the market benefits equations are assumed to apply for each period, general uncertainty about T() is the only possible uncertainty in T. 

The uncertainty about T produces three consequences which can spelled out when integrating (7) with (15). 

First

T = [ET-1() + ET-1()  T] …,                                                                       (16)


Second

ET-1(T) = ET-1()…,                                                                                          (17)


And third

 = ET-1()… cov (T, ).                                                   (18)

The ratio of (17) and (18) generates

= / ET-1 () = cov (T, ).                                                                                   (19)

Equations (17) to (19) and the general market benefits equations (3) and (4) can be deployed to describe the value of CHP at T-1 as

T-1 =                                                                                                      (20)

T-1 =                                                                             (21)

T-1 =                                                                                                                    (22)

where the value of the weighted discount rate  is determined, ratio cov(, ). 

By replacing (17) into (22) 

WT-1 = ET-1()….                                                                                                   (23)

To summarise, starting with eq. (15), it has been shown that if the value of CHP technology at some time T can be defined as ET(), i.e. the estimated value at T of the net benefits to taking place at the fixed time t, discounted at rates with multi-project weights for each of the periods between T and t, then the value of the technology at z- 1 can also be defined as ET-1(), which is the estimated value of , at T-1, discounted at multi-project weighted rates for each of the periods from T-1 to t. A recursive argument is reached, which means that equivalent expressions can be drawn for the market value of the technology at all earlier periods. In developing eqs. (9) and (14), it has been shown that (15) applies at t-1 and t-2. As a consequence, it can be inferred that (23) is an appropriate assessment of the market value of the CHP project at any point in time. By defining time 0 as present time, the current market value of CHP, which will be funded at the single future time t, will be

W0 = E0() .                                                                                                        (24)


4. Discussion on the case of CHP
In projects where benefits each time are determined according to available budget and risk, the current market value of the future available budget can be expressed in the present value form of equation (24). This is clear after modelling the market benefits of an energy technology project by tracing the assessment process reversely through time. In addition, the weighted discount rate  for any period T must be known with certainty at all prior times. Eqs. (21) and (22) imply that if is known, then the three variables that affect , i.e. (i) the non-weighted rate of interest BAT, the value of risk νT, and the ratio T), are known at earlier times. Even if the ratio  T), i.e. the multi-project weight in , has to be certain, T) and can be uncertain prior to T-1. This means that while the performance of CHP technology in terms of risk and estimated value of the investment in the project at T are uncertain prior to T-1, the ratio of these uncertain contributions is certain.

The benefit assessment procedure through reverse time approach reveals that because there is certainty about the weighted discount rates in (15), uncertainty about  at times prior to T derives simply from uncertainty regarding ET(). Eq. (16) states that there is correlation between and T(). From equations (7) and (8) and from (17) to (19) 

/  = cov(T, ) = cov (T(), )/ ET-1().

This means that if /  is known for earlier periods, cov(T, ) is known at all times prior to T.

Since the ratio cov/  which represents the multi-project weighting of discount rate E() for period T is cov(T, ), the intertemporal model has traced the process of multi-project weighting for discount rates back to uncertainty about T(), i.e. the assessment to be made at time T about the estimated value of the net benefits taking place at t, as in (Koopman et al, 1964). The uncertainty of the benefit/cost ratio  is the uncertainty about , i.e. the total value at T of the budget invested at T-1, which consists of the sum of all  of individual projects on different energy technologies.

Expanding the earlier analysis to all projects on energy technologies, it can be concluded that the uncertainty of  is attributable to the reassessment of the future net benefits prospects of all technologies. Hence cov(T, ) reveals the degree of association between the reassessment of a single technology’s net benefit prospects and the reassessment of the net benefit prospects of all technologies.

The weighted discount rate E() that originates from eqs. (20) to (23) must also satisfy eq. (2). Formally

E() = DAT + [E()- DAT] δT,                                                                                                              (25)

E() needs to be known in all periods prior to T. This implies that δT, which is the multi-project weight in terms of available budget and risk associated with CHP technology from T-1 to T, is known at earlier times.

δT = .                                                          

After tracing the multi-project weighting in E() to cov(T, ) and after demonstrating that δT, carries out this same multi-project weight in (25), the risk on the technology’s next available budgets at T  has been traced back to the relationship between the reassessment of its net benefits prospects that takes place at T and the reassessments of the net benefits prospects of all technologies.

Taking into account all of the aforementioned, eq. (7), which is designed to represent the assessment of estimated future budgets available to invest in a technology, drops any allegation of the initially suspected discretionary discount rate setting. As a result, there are known non-stochastic discount rates that discount the current estimated value of future available budgets for energy technologies. 

In discount rates, weighting occurs because of the uncertain evolution across technologies of the estimated value of future available budget. The process generating reassessments of the estimated value of the available budget can be described as in (7), but with the additional restrictions that the covariance of T with is known in all earlier periods. Finally, (7) provides a convenient way to characterize the admissible uncertainty in the benefit assessment equations for a multiple project problem.


5. Assessing costs and benefits with multi-project weighted discount rates
The net value of a technology at time 0, or at any point in time, is the value of its estimated benefits minus the estimated costs. Formally

(ET-1 (tT ,

where  are the costs associated with a specific technology and tT represents changes in the estimated value of  between T-1 and T. In the limit case of tT =0, discount rates can be set either as deterministic or as constant parameters. For T=0

W0 =  . 

If WT is the net value of a project at time T, whose benefits take place at time t,

 = ,                                                                                                          (26)

then

E( = DAT + [E( BAT]δtT,                                               δtT = .                                         (27)     

The values of and hence of δtT can differ both across the net values of different periods t and across time T. Finally, even if the path of δtT could be predictable, this multi-project weight of the may be different for different periods T.

6. Conclusions
Multiple-project weighted discount rates are designed to reflect changes in both available budgets for determinate portfolios of projects and risks associated with future reassessment of market benefits across technologies. The case of CHP technology, whose future market benefits and available budget for re-investment are dependent upon performance of both CHP and other technologies demonstrated how multi-project weights can be used to set discount rates for decisions on project portfolios with a relatively short time period of 20-30 years. Using a reversed intertemporal approach, it has been possible to determine discount rates with multi-project weights for discrete periods of time. This was possible despite the fact that uncertainty around the performance of both CHP and other energy technologies might affect uncertain variables, such as risk and estimated available budget for future re-investment.

In this paper the framework for assessing multiple projects weights for discount rates is non-stochastic. It follows the approach of an applied general equilibrium problem where the rates for the different periods preceding the decision to re-invest the available budget may not be the same because of changing conditions in market benefits of a portfolio of projects. Deterministic approaches and constant discount rates might still be applied for those projects within the portfolio whose parameters of the benefit assessment equation (4) are constant through time. The use of discrete time units is a key feature of multi-project weighted discount rates. It is assumed that no continuous re-investment is possible. This is particularly convenient for Energy policies where re-investment in individual or groups of technologies takes place at set times, often determined by policy goals, e.g. percentage of renewable sources of energy by a given year.

With regards to risk, it should be clarified that the intention of this work is to consider changes in portfolios of projects given future budget availability for re-investment along with market risk of outstanding projects, and not to include a premium for risk as in a private opportunity cost of capital framework. To this purpose, eq. (2) defines risk in terms of reassessment of the market benefits market of outstanding projects and not in terms of risk premium. The former allows for a break-down of uncertainty into certain time components (Samuelson, 2008). The latter would arguably generate too high discount rates (Di Vita, 2008; Viscusi, 1988).

The application of multiple projects weights might be limited to CBA of projects or policies which cannot be taken in isolation. Policies for energy technologies are the most immediate example. For projects whose time frames exceed 20-30 years, the model would need a stochastic application, which goes beyond the remit of this paper. Moreover, in the long term, the risk of discretionary selection of discount rates to “favour” generations over others increases, with the consequences explained by Viscusi (1997).

Finally, the model is adequate in the assessment of market benefits of portfolios of projects. It has the potential to make a significant contribution in scenario work for the transition to a low-carbon economy. However, this author acknowledges the ‘superior’ nature of academic discussions dealing with intergenerational issues and setting discount rates for non-market benefits.
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